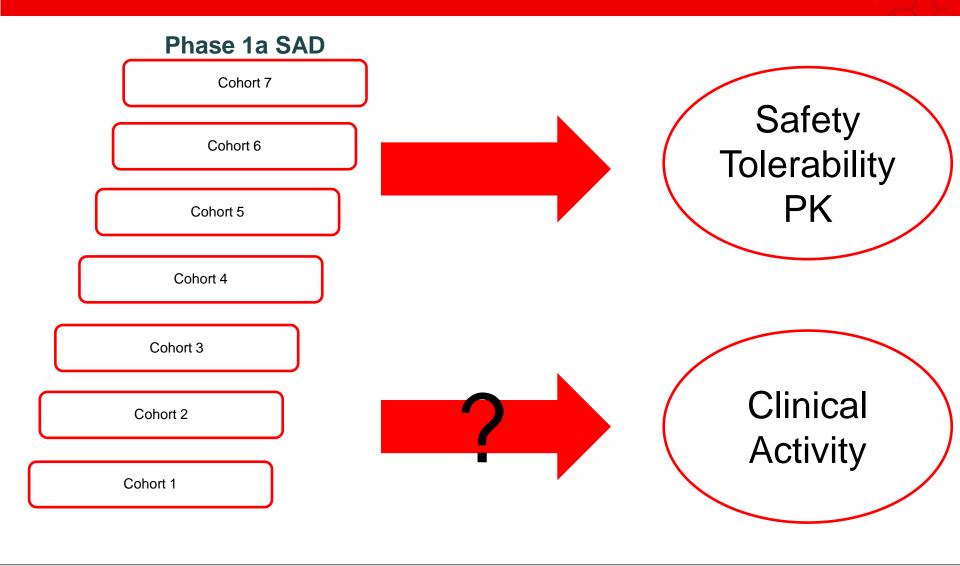
Looking for Clinical Activity in a First-in-Human Study

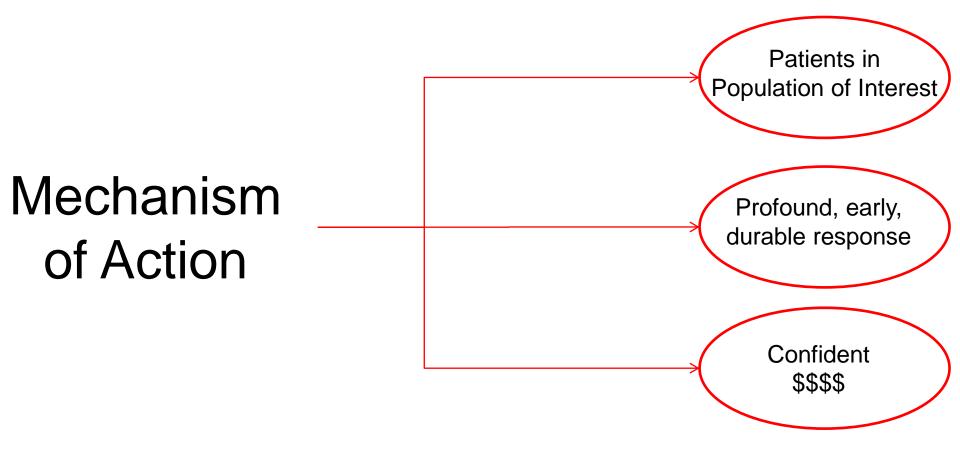
Melissa E. Spann Melanie Chan Paul H. Berg

Company Confidential
© 2013 Eli Lilly and Company

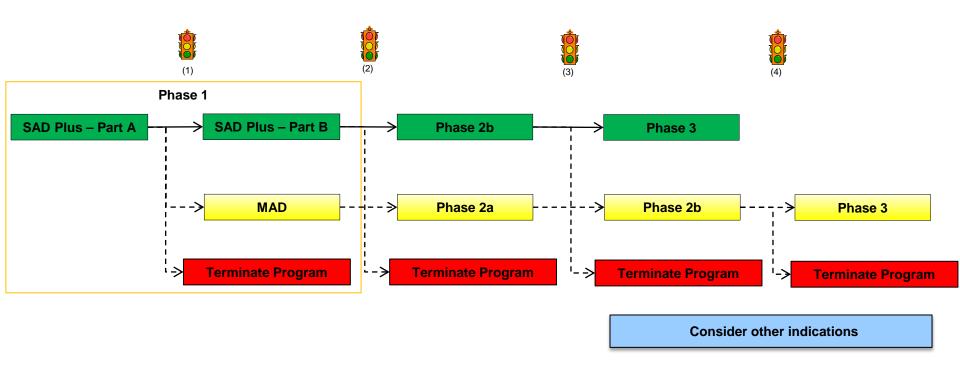
Introduction



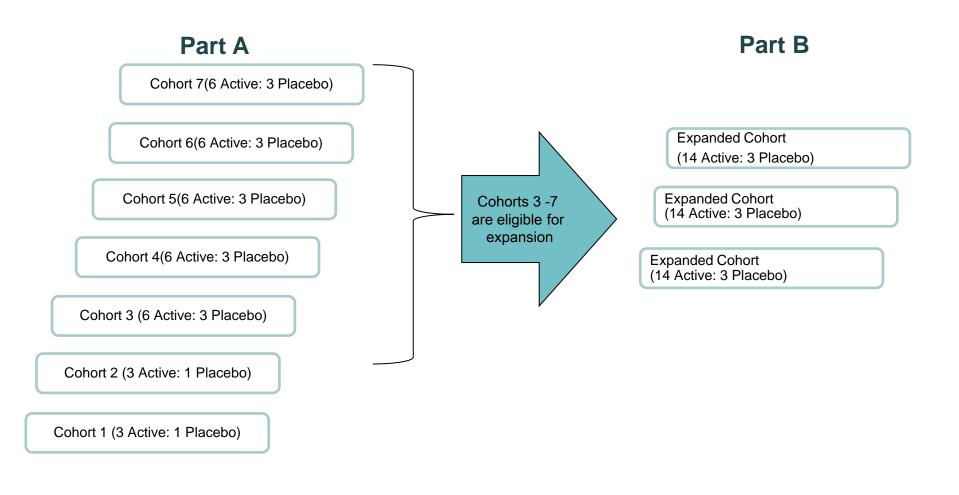
Background Information



Adaptive Development Plan



Phase 1: SAD Plus Design



Cohort Expansion Criteria

Endpoints	Target Threshold		
Endpoint 1 (Disease Activity)	≥ 0.6 Reduction (Continuous)	2 of 3 target thresholds must be met by at least 3 of 6 patients	
Endpoint 2 (Disease Activity)	≥ 20% Reduction (Continuous)	on active treatment at any timepoint during 4 weeks of treatment (data collected at weeks 1, 2, and 4)	
Endpoint 3 (PD Marker)	Within normal range (Binomial)		

Continuous Longitudinal Model (1)

Longitudinal improvement was modeled as a fraction of the final improvement.

$$y_{i,t} \sim N(f_t(\mu_j + \delta_i), \varphi_t^2 \sigma_j^2) = N(f_t \mu_j, \varphi_t^2 \sigma_j^2 + f_{t^2} \tau^2)$$
$$\delta_i \sim N(0, \tau^2)$$
$$y_{i,T} \sim N(\mu_j, \sigma_j^2 + \tau^2)$$

 $y_{i,T}$ is the final primary outcome for patient i $\sigma_j^2 + \tau^2$ is the variance for the final outcome μ_j is the mean of the final outcome φ_t^2 is the variance at visit t in terms of the fraction of the final variance $(0 \le \varphi_t^2 \le 1)$ f_t is the mean at visit t in terms of the fraction of the final mean $(0 \le f_t \le 1)$

Continuous Longitudinal Model (2)

<i>ith</i> Patient	Visit 1	Visit 2	Visit 3	Final Visit
1	<i>Y</i> ₁₁	<i>y</i> ₁₂	<i>y</i> ₁₃	Y_1
2	y ₂₁	y ₂₂	y ₂₃	Y_2
3	y ₃₁	<i>y</i> ₃₂	<i>y</i> ₃₃	Y_3
4	Y ₄₁	y ₄₂	y ₄₃	Y_4
5	y ₅₁	y ₅₂	y ₅₃	Y_5
6	Y ₆₁	y ₆₂	y ₆₃	Y_6

Based on desired fraction of final response, simulate values for visits 1-3

Simulate value for final visit

Binomial Longitudinal Model (1)

For the first visit:

$$P(y_1 = 1) = Q_1$$

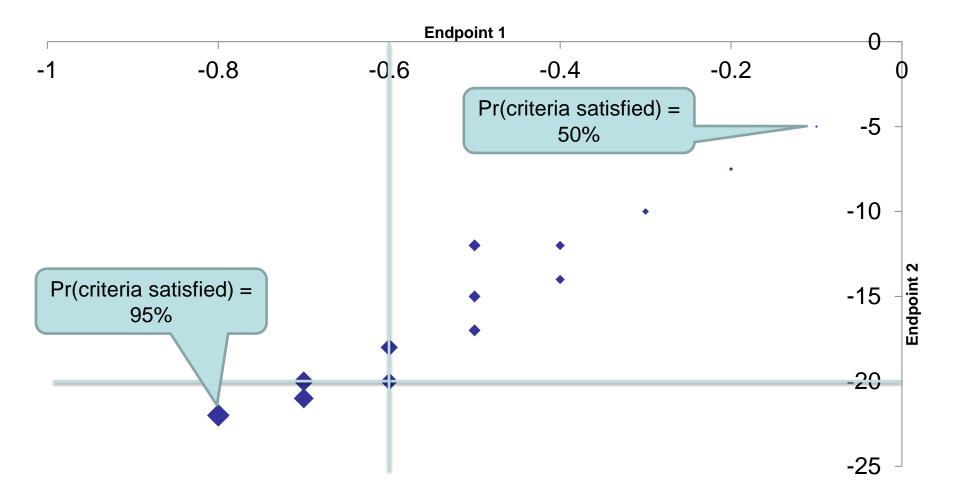
For subsequent visits:

$$P(y_t = 1|y_{t-1} = 0) = Q_t$$

 $P(y_t = 1|y_{t-1} = 1) = R_t$

Where Q_t and R_t are matrices containing transition probabilities from 0 to 1 and from 1 to 1, respectively.

Simulated Values and Resulting Probabilities



Part B Success Criteria

Endpoint 1: ≥ 1.2 absolute change from baseline
 If Pr(Therapy ≥ 1.2) ≥ 60% then success

Endpoint 2: ≥ 30% decrease from baseline
 If Pr(Therapy - PBO ≥ 0.30) ≥ 60% then success

Part B success criteria evaluated based on data collected at weeks 1, 2, 4, and 8.

Part B Dose Modeling

• Let R_i be the change from the baseline period to the endpoint in the response. Let θ_d be the mean response for R_i when $d_i = d$. It was assumed that

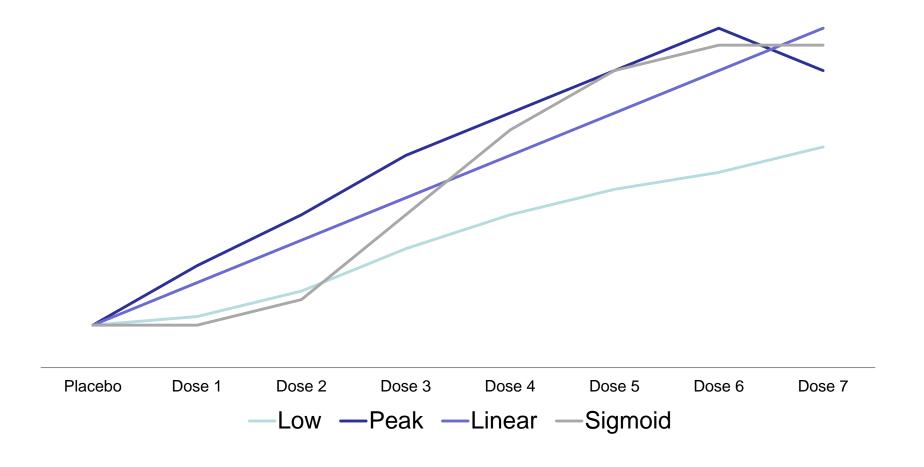
$$R_i \sim \theta_{d_i} + N(0, \sigma^2)$$

• Doses were modeled assuming $\theta_d \sim N(\mu_d, v_d^2)$ and

$$\sigma^2 = IG\left(\frac{\sigma_n}{2}, \frac{{\sigma_\mu}^2 \sigma_n}{2}\right)$$

• Priors for endpoints 1 and 2 were diffuse with $\mu_d=0,\ v_d=100,$ $\sigma_\mu=12,$ and $\sigma_n=1.$

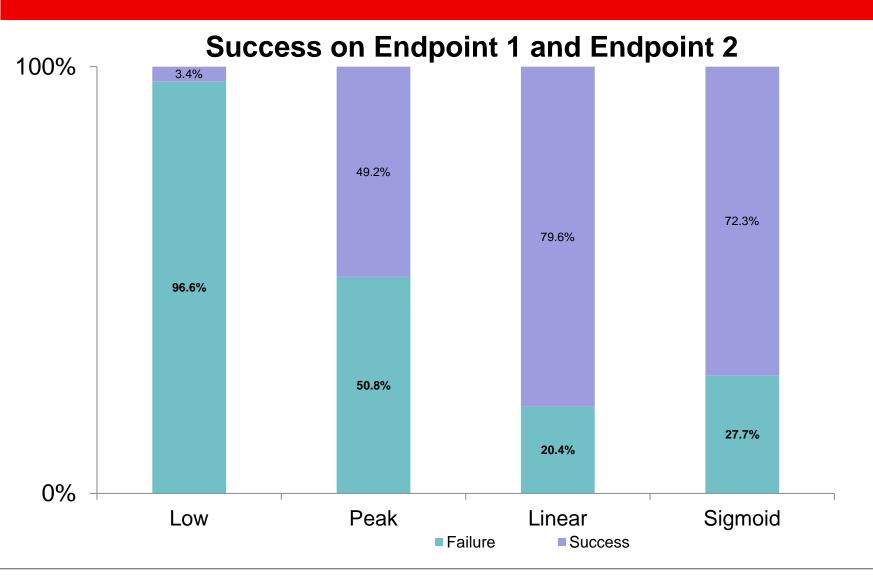
Dose Response Curves



Probabilities of Success (1)



Probabilities of Success (2)



Concluding Remarks

